
 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 1 of 58
Oct.08.24

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0
User's Manual

Contents

1. Overview ... 3
1.1 Product Configuration .. 3
1.2 Operating Environment ... 4
1.3 Function ... 5
1.4 Pruning .. 6
1.5 Relationship between Compressing AI Models and DRP-AI Performance ... 7
1.6 Two Pruning Modes... 9
1.7 Updates in Version 1.1.0 ... 10

2. Setting Up the DRP-AI Extension Pack.. 11
2.1 Installing the Library for Use by the DRP-AI Extension Pack.. 11
2.2 Adding the Environment Variable .. 11
2.3 Decompressing the DRP-AI Extension Pack .. 11
2.4 Adding the Path to the DRP-AI Extension Pack .. 11

3. Using the DRP-AI Extension Pack ... 12
3.1 Flow of Using the DRP-AI Extension Pack ... 12
3.2 [PyTorch] Adding the DRP-AI Extension Pack .. 14
3.2.1 [PyTorch] Importing the DRP-AI Extension Pack Module ... 16
3.2.2 [PyTorch] Loading the Trained Model ... 16
3.2.3 [PyTorch] Preparing for Pruning the Model ... 17
3.2.4 [PyTorch] Updating the Pruning Parameters .. 18
3.2.5 [PyTorch] Saving the Pruned Model.. 18
3.3 [PyTorch] Confirming the Result of Pruning .. 19
3.4 [PyTorch] Training or Inference with a Saved Pruned Model ... 21
3.4.1 [Recommend] How to load the pruned model with load_pruned_state_dict() 21
3.4.2 How to load the pruned model with make_pruning_layer_list() and Pruner() 22
3.5 [TensorFlow] Adding the DRP-AI Extension Pack .. 23
3.5.1 [TensorFlow] Importing the DRP-AI Extension Pack Module ... 24
3.5.2 [TensorFlow] Loading the Trained Model .. 24
3.5.3 [TensorFlow] Preparing for Pruning the Model ... 24
3.5.4 [TensorFlow] Registering the Callback Function for Pruning .. 25
3.5.5 [TensorFlow] Saving the Pruned Model .. 25
3.6 [TensorFlow] Confirming the Result of Pruning .. 26
3.7 [TensorFlow] Training or Inference with a Saved Pruned Model .. 27

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 2 of 58
Oct.08.24

3.8 Sample Code ... 29
3.8.1 classification/pytorch_mobilenetv2 .. 29
3.8.2 classification/tensorflow_cnn ... 31

4. Details on the DRP-AI Extension Pack API .. 33
4.1 List of DRP-AI Extension Pack API Functions and Class ... 33
4.2 [PyTorch] ... 34
4.2.1 make_pruning_layer_list ... 34
4.2.2 Pruner .. 36
4.2.2.1 update.. 39
4.2.2.2 state_dict ... 39
4.2.2.3 load_state_dict .. 40
4.2.3 get_endstep ... 41
4.2.4 get_frequency .. 42
4.2.5 get_model_info .. 43
4.2.6 deepcopy_model ... 45
4.2.7 load_pruned_state_dict ... 46
4.3 [TensorFlow] .. 48
4.3.1 make_pruning_layer_list ... 48
4.3.2 Pruner .. 49
4.3.2.1 get_pruning_model .. 51
4.3.3 get_endstep ... 52
4.3.4 get_frequency .. 53

5. Recommendations during Application of Pruning ... 54

6. Usage Notes .. 54

Revision History .. 58

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 3 of 58
Oct.08.24

1. Overview
This section describes the operating environment and functions of the DRP-AI Extension Pack.

1.1 Product Configuration

Table 1.1 Product Configuration

Item Description
r20ut5188ej0200-drp-ai-extension-pack.pdf This manual
drpai-extension-pack_ver1.1.0.tar.gz DRP-AI Extension Pack (product covered by

this manual)

Table 1.2 Configuration of Files in drpai-extension-pack_ver1.1.0.tar.gz

Configuration of Files Description
 drpai-extension-pack_ver1.1.0.tar.gz

 drpai_compaction_tool API library of the functions and class listed in Table 4.1

 samples

 classification

 pytorch_mobilenetv2 Sample code using MobileNetV2 of the PyTorch version.
See 3.8.1 for details.

 tensorflow_cnn Sample code using CNN of the TensorFlow version.
See 3.8.2 for details.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 4 of 58
Oct.08.24

1.2 Operating Environment
The operating environment and software to be installed for the DRP-AI Extension Pack in each case are
shown in the following tables.

Table 1.3 Operating Environment (When Using PyTorch)

Item Software Name and Version Number, etc.
Operating environment Ubuntu 20.04 LTS, 64-bit version

CUDA 11.6
Software to be installed Python 3.8.10

torch==1.13.1
torchvision==0.14.1
torchstat==0.0.7
pandas==1.4.2
onnx==1.11.0

Table 1.4 Operating Environment (When Using TensorFlow)

Item Software Name and Version Number, etc.
Operating environment Ubuntu 20.04 LTS, 64-bit version

CUDA 11.2
Software to be installed Python 3.8.10

tensorflow==2.5.0
tensorflow-model-optimization==0.6.0
tf2onnx==1.14.0
onnx==1.11.0

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 5 of 58
Oct.08.24

1.3 Function
The DRP-AI Extension Pack provides a pruning function optimized for the DRP-AI. A general description of
pruning is given under 1.4, Pruning, on the following page. This pruning function optimized for the DRP-AI
can be used by using the DRP-AI Extension Pack in combination with the training code written with the use
of PyTorch or TensorFlow.

Figure 1-1 Deployment Flow

Training data
collection Training Exchanging

the AI model

ML framework

Object
code

Dataset Trained model

Downloading

Target board

Camera DRP library
for use in resizing,

cropping, binarizing, etc.

“Cat”
at 95%

PC

Target device

This product

Learning
phase

Inference
phase

Pre-processing
(by the DRP)

Inference
(by the DRP-AI) Inference result

DRP-AI
Extension Pack Dataset for

quantization

*1 DRP-AI TVM is powered by EdgeCortix MERA™ Compiler Framework.

DRP-AI
TVM*1 / Translator

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 6 of 58
Oct.08.24

1.4 Pruning
Nodes are interconnected in a neural network as shown in the figure below. Methods of reducing the number
of parameters by removing weights between nodes or removing nodes are referred to as “pruning”. A neural
network to which pruning has not been applied is generally referred to as a dense neural network.

Applying pruning to a neural network leads to a slight deterioration in the accuracy of the model but can
reduce the power required by hardware and accelerate the inference process.

Figure 1-2 Schematic View of the Pruning of a Neural Network
Note: In the use of this product, we recommend pruning by at least 70% to improve the processing

performance of the DRP-AI.

Dense neural network Pruned neural network

Pruning

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 7 of 58
Oct.08.24

1.5 Relationship between Compressing AI Models and DRP-AI Performance
DRP-AI for RZ/V2H supports the feature of efficiently calculating the pruned AI model. Therefore, power
efficiency is improved by using the pruned AI model.

The following graph provides an example of improvement in power efficiency when changing from an
unpruned AI model to a pruned AI model. Compared to unpruned AI models, pruned AI models are
significantly more power-efficient.

Figure 1-3 DRP-AI Performance after Compressing AI Models

Note: Quantization was applied to the AI models and measurements were performed.

0

2

4

6

8

ResNet50 YOLOv2

AI
 In

fe
re

nc
e

ef
fic

ie
nc

y
[T

O
PS

/W
]

Unpruned Pruned

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 8 of 58
Oct.08.24

Applying compressing processing such as pruning and quantization to AI models might generally lower the
accuracy of models. Using the DRP-AI Extension Pack in pruning, however, allows ensuring the same or
almost the same accuracy for the AI model as that before pruning by proceeding with retraining after pruning.
The figure below shows the results of changes in accuracy with the use of the YOLOv2 models. Compared
with an accuracy of 74.9% before compressing, that after compressing (pruning plus quantization) can reach
72.3%.

Figure 1-4 Changes in the Accuracy of YOLOv2 Models after Compressing
Note: For details on calibration and quantization, see the DRP-AI_Quantizer User’s Manual.

RZ/V2HOSS Pre-trained Model

INT8 sparse
(INT8 quantization + pruning)

INT8 dense
(INT8 quantization)

FP32

Calibration Retraining
and

calibration

FP32 model INT8 model INT8 pruned model
(After retraining)(After calibration)

Ac
cu

ra
cy

 (%
) o

f t
he

 Y
O

LO
v2

 m
od

el

74.9%

66.3%

74.9%

0.1%

72.3%

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 9 of 58
Oct.08.24

1.6 Two Pruning Modes
This product supports two pruning modes. One-shot pruning is characterized by a relatively short training
time being associated with pruning. In gradual pruning, longer training times are associated with pruning
than in one-shot pruning, but the accuracy may be improved. Table 1.5 shows a comparison of the two
pruning modes. The pruning rate rises as training proceeds in gradual pruning. For details on how to set one-
shot pruning or gradual pruning, see 4.2.2 or 4.3.2, depending on whether you are using PyTorch or
TensorFlow, respectively. Note that the initial application of one-shot pruning is recommended.

Table 1.5 Comparison of the Two Pruning Modes

One-shot pruning (recommended)

Pruning is applied only once as the initial step.

Gradual pruning

Pruning is applied gradually.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 10 of 58
Oct.08.24

1.7 Updates in Version 1.1.0
The updates in DRP-AI Extension Pack V1.1.0 are as follows.

 Supported PyTorch models with a Multi-Head Attention structure for a Transformer neural network.

For models using torch.nn.MultiheadAttention(), please note that there are usage considerations. For
more information, please refer to 6. Usage Notes.

o PyTorch torch.nn.MultiheadAttention()：
https://pytorch.org/docs/1.13/generated/torch.nn.MultiheadAttention.html#multiheadattention

https://pytorch.org/docs/1.13/generated/torch.nn.MultiheadAttention.html#multiheadattention

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 11 of 58
Oct.08.24

2. Setting Up the DRP-AI Extension Pack
This section describes how to set up the DRP-AI Extension Pack. Descriptions in this section are on the
assumption that Python 3.8.10 has been set up on a PC running Ubuntu.

2.1 Installing the Library for Use by the DRP-AI Extension Pack
Install the following library on a PC running Ubuntu.

[When using PyTorch]

$ pip3 install torch==1.13.1+cu116 torchvision==0.14.1+cu116 \

 --extra-index-url https://download.pytorch.org/whl/cu116

$ pip3 install torchstat==0.0.7 pandas==1.4.2 onnx==1.11.0

[When using TensorFlow]
$ pip3 install tensorflow==2.5.0 tensorflow-model-optimization==0.6.0 tf2onnx==1.14.0 onnx==1.11.0

2.2 Adding the Environment Variable
Register the working directory as an environment variable.

$ export WORK=/home/<Path to working directory>

Note: Change <Path to working directory> to suit the environment of the PC you are using.

2.3 Decompressing the DRP-AI Extension Pack
Place drpai-extension-pack_ver*.tar.gz in the working directory and execute the following command.

$ cd $WORK

$ tar -xvf drpai-extension-pack_ver*.tar.gz

[When using TensorFlow, also execute the following command.]

$ drpai_compaction_tool/scripts/setup_tf.sh

2.4 Adding the Path to the DRP-AI Extension Pack
Execute the following command to add the path to the DRP-AI Extension Pack.

$ cd $WORK

$ export PYTHONPATH="$(pwd):$PYTHONPATH"

Note: Once you have ended the terminal session, re-execute the command stated above when you intend
to use the extension pack again.

Execute the following command. With output of the version number, the setup processing is completed.

$ python3 -c "import drpai_compaction_tool; print(drpai_compaction_tool.__version__)"

<DRP-AI Extension Pack version>

[When using TensorFlow, ensure that the following commands do not generate any errors.]

$ python3 -c "from drpai_compaction_tool.tensorflow import Pruner"

Note: <DRP-AI Extension Pack version> depends on the version you are using.

https://download.pytorch.org/whl/cu116

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 12 of 58
Oct.08.24

3. Using the DRP-AI Extension Pack
This section describes how to use the DRP-AI Extension Pack.

3.1 Flow of Using the DRP-AI Extension Pack
Use the DRP-AI Extension Pack in combination with the training code written with the use of PyTorch or
TensorFlow. Figure 3-1 shows the flow of using the DRP-AI Extension Pack.
The flow consists of two steps. The first step is initial training. Initial training involves training of the AI model
without pruning. Use the code for use in initial training and a dataset you have prepared.

The second step is pruning and then retraining. This includes retraining of the AI model by adding the DRP-
AI Extension Pack to the code for use in initial training. For details on how to add the DRP-AI Extension Pack
to the code for use in initial training, see 3.2, [PyTorch] Adding the DRP-AI Extension Pack. Check the
accuracy of the AI model after one round of pruning then retraining has been completed. Repeat pruning
then retraining with increasingly high pruning rates while confirming that the rates in use do not create
problems in terms of accuracy.

Figure 3-1 Flow of Using the DRP-AI Extension Pack

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 13 of 58
Oct.08.24

Figure 3-2 consists of listings of the code written with PyTorch for use in initial training without and with
addition of the DRP-AI Extension Pack. The code in the left column is that for initial training and the code in
the right column is that for pruning then retraining. The green shading indicates the differences between the
two listings, that is, the several lines that are added to make the DRP-AI Extension Pack usable. For details
on the case of using PyTorch, see 3.2. For details on the case of using TensorFlow, see 3.5.

Figure 3-2 How to Add the DRP-AI Extension Pack to the Code for Use in Initial Training

(Left: Code for Initial Training; Right: Code for Pruning Then Retraining)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 14 of 58
Oct.08.24

3.2 [PyTorch] Adding the DRP-AI Extension Pack
The steps involved in adding the DRP-AI Extension Pack to the code written with PyTorch for use in initial
training and then proceeding with pruning and retraining are given below. Implement the five processes
listed below in the code for initial training.

1. Importing the DRP-AI Extension Pack module
2. Loading the trained model
3. Preparing for pruning the model
4. Updating the pruning parameters
5. Saving the pruned model

The figure below shows a listing of the code for retraining, which is obtained by adding the DRP-AI Extension
Pack to the code written with PyTorch for use in initial training. In this figure, red text indicates the statements
added to the code for use in initial training.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Importing the library
import torch
from torch import nn
from torch.optim import SGD
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
1. Importing the DRP-AI Extension Pack module
from drpai_compaction_tool.pytorch import make_pruning_layer_list, \
 Pruner, \
 get_model_info

Defining the neural network
class NeuralNetwork(nn.Module):
 def __init__(self):
 super(NeuralNetwork, self).__init__()
 self.flatten = nn.Flatten()
 self.linear_relu_stack = nn.Sequential(
 nn.Linear(28*28, 512),
 nn.ReLU(),
 nn.Linear(512, 512),
 nn.ReLU(),
 nn.Linear(512, 10),
 nn.ReLU()
)

 def forward(self, x):
 x = self.flatten(x)
 logits = self.linear_relu_stack(x)
 return logits
model = NeuralNetwork()
2. Loading the trained model
model.load_state_dict(torch.load("pretrained_model.pth"))

Registering the model parameters with the optimizer
optimizer = SGD(model.parameters(), lr=1e-3)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 15 of 58
Oct.08.24

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Defining the training data and loss function
training_data = datasets.FashionMNIST(
 root="data",
 train=True,
 download=True,
 transform=ToTensor(),
)
loss_fn = nn.CrossEntropyLoss()
batch_size = 64
max_epochs = 10
3. Preparing for pruning the model
pruning_layer_list = make_pruning_layer_list(model, [(1,1,28,28)])
pruner = Pruner(model,
 pruning_layer_list,
 final_pr=0.7)
print(get_model_info(model, [(1,1,28,28)]))
Training
for epoch in range(max_epochs):
 for batch_x, batch_y in DataLoader(training_data, batch_size):
 # 4. Updating the pruning parameters
 pruner.update()

 # Compute prediction and loss
 pred = model(batch_x)
 loss = loss_fn(pred, batch_y)

 # Backpropagation
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

5. Saving the pruned model
if pruner.is_finished
 torch.save(pruner.state_dict(), "pruned_model.pth")
 torch.onnx.export(model,

training_data[0][0].unsqueeze(0),
‘pruned_model.onnx’,
opset_version = 12)

Figure 3-3 Training Code for Pruning Then Retraining

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 16 of 58
Oct.08.24

3.2.1 [PyTorch] Importing the DRP-AI Extension Pack Module
Import the DRP-AI Extension Pack module to the code written with PyTorch for use in initial training.

1
2
3
4
5
6
7
8
9
10
11

Importing the library
import torch
from torch import nn
from torch.optim import SGD
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
1. Importing the DRP-AI Extension Pack module
from drpai_compaction_tool.pytorch import make_pruning_layer_list, \
 Pruner \
 get_model_info

Figure 3-4 Importing the DRP-AI Extension Pack Module

3.2.2 [PyTorch] Loading the Trained Model
Define the model and load the trained model.

31
32
33
34

model = NeuralNetwork()
2. Loading the trained model
model.load_state_dict(torch.load("pretrained_model.pth"))

Figure 3-5 Loading the Trained Model

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 17 of 58
Oct.08.24

3.2.3 [PyTorch] Preparing for Pruning the Model
Register the model parameters with the optimizer and then execute the API function for pruning. After the
API function for pruning has been executed, confirming that pruning has been performed with the
get_model_info() function is recommended.

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Registering the model parameters with the optimizer
optimizer = SGD(model.parameters(), lr=1e-3)

Defining the training data and loss function
training_data = datasets.FashionMNIST(
 root="data",
 train=True,
 download=True,
 transform=ToTensor(),
)
loss_fn = nn.CrossEntropyLoss()
batch_size = 64
max_epochs = 10
3. Preparing for pruning the model
pruning_layer_list = make_pruning_layer_list(model, [(1,1,28,28)])
pruner = Pruner(model,
 pruning_layer_list,
 final_pr=0.7)
print(get_model_info(model, [(1,1,28,28)]))

Figure 3-6 Pruning the Model
Note: Execute the API function for pruning (Pruner) after registering the model parameters with the

optimizer.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 18 of 58
Oct.08.24

3.2.4 [PyTorch] Updating the Pruning Parameters
Update the pruning parameters during training. The API function in red text below (pruner.update()) must be
called at the start of each iteration.

54
55
56
57
58
59
60
61
62
63
64
65
66
67

Training
for epoch in range(max_epochs):
 for batch_x, batch_y in DataLoader(training_data, batch_size):
 # 4. Updating the pruning parameters
 pruner.update()

 # Compute prediction and loss
 pred = model(batch_x)
 loss = loss_fn(pred, batch_y)

 # Backpropagation
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

Figure 3-7 Updating the Pruning Parameters

3.2.5 [PyTorch] Saving the Pruned Model
After having confirmed the completion of pruning, use the PyTorch method to save the pruned model. If the
model is to be exported to ONNX, specify 12 for opset_version.

71
72
73
74
75
76
77

5. Saving the pruned model
if pruner.is_finished:
 torch.save(pruner.state_dict(), "pruned_model.pth")
 torch.onnx.export(model,

training_data[0][0].unsqueeze(0),
'pruned_model.onnx',
opset_version = 12)

Figure 3-8 Saving the Pruned Model

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 19 of 58
Oct.08.24

3.3 [PyTorch] Confirming the Result of Pruning
The steps involved in confirming the result of pruning are given below. The function (get_model_info)
provided by the DRP-AI Extension Pack can be used to confirm how many parameters were pruned in which
layers and the reductions in the number of multiply-and-accumulate calculations. For details on how to use
the get_model_info function, see 4.2.5. Calling this function is possible both before and after pruning.

The figure below shows a listing of the sample code in one-shot pruning. In one-shot pruning, the
confirmation of pruning being applied before training is recommended.

1
2
3
4
5
6
7
8
9
10
11
12

・・・・(Omitted)
3. Preparing for pruning the model
pruning_layer_list = make_pruning_layer_list(model, [(1,1,28,28)])
pruner = Pruner(model,
 pruning_layer_list,
 final_pr = 0.7)
Recommended: Confirming the result of pruning before training
print(get_model_info(model, [(1,1,28,28)]))

Training
for epoch in range(max_epochs):
・・・・(Omitted)

Figure 3-9 Confirming the Result of Pruning: One-Shot Pruning

The figure below shows a listing of the sample code in gradual pruning. In gradual pruning, the confirmation
of pruning being applied during training is recommended.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

・・・・(Omitted)
3. Preparing for pruning the model
pruning_layer_list = make_pruning_layer_list(model, [(1,1,28,28)])
end_step = get_endstep(data_loader,
 max_epoch=max_epochs)
frequency = get_frequency(dataloader=data_loader)
pruner = Pruner(model,
 pruning_layer_list,
 final_pr = 0.7,
 end_step=end_step,
 frequency=frequency)

Training
for epoch in range(max_epochs):
 for i, (batch_x, batch_y) in enumerate(data_loader):
 # 4. Updating the pruning parameters
 pruner.update()
 # Recommended: Confirming the result of pruning during training
 if i % 100 == 0:
 print(get_model_info(model, [(1,1,28,28)]))
・・・・(Omitted)

Figure 3-10 Confirming the Result of Pruning: Gradual Pruning

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 20 of 58
Oct.08.24

The figure below shows the result of executing get_model_info. The meanings of the headings in the figure
are as follows.

“module name”: Layer name
“input shape”: Input size to a layer
“output shape”: Output size from a layer
“params”: Number of parameters
“sparsity”: Pruning rate
“Baseline MAC”: Number of multiply-and-accumulate calculations before pruning
“Current MAC”: Number of multiply-and-accumulate calculations after pruning

The result of pruning shown below indicates that pruning by about 70% was applied in the
"linear_relu_stack.2" layer. It also indicates that pruning reduces the number of multiply-and-accumulate
calculations from 262,144 before pruning to 78,848 after pruning.

 module name input shape output shape params sparsity Baseline MAC Current MAC

0 linear_relu_stack.0 784 512 401920.0 0.000 401,408.0 401,408.0

1 linear_relu_stack.2 512 512 262656.0 0.699 262,144.0 78,848.0

2 linear_relu_stack.4 512 10 5130.0 0.000 5,120.0 5,120.0

total 669706.0 668,672.0 485,376.0

Figure 3-11 Result of Executing get_model_info

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 21 of 58
Oct.08.24

3.4 [PyTorch] Training or Inference with a Saved Pruned Model
The steps involved in loading a saved pruned model are given below. Refer to this section when continuing
to train a saved pruned model or performing inference with a pruned model. There are 2 methods to load the
saved pruned model. The method by using load_pruned_state_dict() is recommended because it is easy to
use.

3.4.1 [Recommend] How to load the pruned model with load_pruned_state_dict()
Load the saved pruned model through the steps listed below.

1. Importing the DRP-AI Extension Pack module
2. Loading the pruned model

Calling the get_model_info function to check the pruning rate after loading of the pruned model is
recommended. For details on how to use the get_model_info function, see 4.2.5.

The figure below shows a list of the sample code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Importing the library
import torch
from torch import nn
1. Importing the DRP-AI Extension Pack module
from drpai_compaction_tool.pytorch import load_pruned_state_dict, \
 get_model_info

Defining the neural network
class NeuralNetwork(nn.Module):
 def __init__(self):
 super(NeuralNetwork, self).__init__()
 self.flatten = nn.Flatten()
 self.linear_relu_stack = nn.Sequential(
 nn.Linear(28*28, 512),
 nn.ReLU(),
 nn.Linear(512, 512),
 nn.ReLU(),
 nn.Linear(512, 10),
 nn.ReLU()
)

 def forward(self, x):
 x = self.flatten(x)
 logits = self.linear_relu_stack(x)
 return logits
model = NeuralNetwork()

2. Loading the pruned model
load_pruned_state_dict(model, torch.load("pruned_model.pth"))
print(get_model_info(model, [(1, 1, 28, 28)]))

Figure 3-12 [PyTorch] Loading the Pruned Model (Method1)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 22 of 58
Oct.08.24

3.4.2 How to load the pruned model with make_pruning_layer_list() and Pruner()
Loads the saved pruned model through the steps listed below.

1. Importing the DRP-AI Extension Pack module
2. Preparing for pruning the model with a pruning rate of 0.0
3. Loading the pruned model

Calling the get_model_info function to check the pruning rate after loading of the pruned model is
recommended. For details on how to use the get_model_info function, see 4.2.5.

The figure below shows a list of the sample code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Importing the library
import torch
from torch import nn
1. Importing the DRP-AI Extension Pack module
from drpai_compaction_tool.pytorch import make_pruning_layer_list, \
 Pruner, \
 get_model_info

Defining the neural network
class NeuralNetwork(nn.Module):
 def __init__(self):
 super(NeuralNetwork, self).__init__()
 self.flatten = nn.Flatten()
 self.linear_relu_stack = nn.Sequential(
 nn.Linear(28*28, 512),
 nn.ReLU(),
 nn.Linear(512, 512),
 nn.ReLU(),
 nn.Linear(512, 10),
 nn.ReLU()
)

 def forward(self, x):
 x = self.flatten(x)
 logits = self.linear_relu_stack(x)
 return logits
model = NeuralNetwork()

2. Preparing for pruning the model with a pruning rate of 0.0
pruning_layer_list = make_pruning_layer_list(model, [(1,1,28,28)])
pruner = Pruner(model, pruning_layer_list, final_pr=0.0)

3. Loading the pruned model
model.load_state_dict(torch.load("pruned_model.pth"), strict=True)
print(get_model_info(model, [(1, 1, 28, 28)]))

Figure 3-13 [PyTorch] Loading the Pruned Model (Method2)
Note: When loading the weights with load_state_dict() function, set strict argument to “True”. When this

argument is set to “False”, weights may not be loaded correctly.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 23 of 58
Oct.08.24

3.5 [TensorFlow] Adding the DRP-AI Extension Pack
The steps involved in adding the DRP-AI Extension Pack to the code written with TensorFlow for use in initial
training and then proceeding with pruning and retraining are given below. Implement the five processes
listed below in the code for initial training.

1. Importing the DRP-AI Extension Pack module
2. Loading the trained model
3. Preparing for pruning the model
4. Registering the callback function for pruning
5. Saving the pruned model

Figure 3-14 consists of listings of the code written with TensorFlow for use in initial training without and with
addition of the DRP-AI Extension Pack. The code in the left column is that for initial training and the code in
the right column is that for pruning then retraining. The green shading indicates the differences between the
two listings, that is, the several lines that are added to make the DRP-AI Extension Pack usable.

Figure 3-14 How to Add the DRP-AI Extension Pack to the Code for Use in Initial Training

(Left: Code for Initial Training; Right: Code for Pruning Then Retraining)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 24 of 58
Oct.08.24

3.5.1 [TensorFlow] Importing the DRP-AI Extension Pack Module
Import the DRP-AI Extension Pack module to the code written with TensorFlow for use in initial training.

1
2
3
4
5
6
7
8

Importing the library
import tensorflow as tf
import tf2onnx
import onnx
import tensorflow_model_optimization as tfmot
1. Importing the DRP-AI Extension Pack module
from drpai_compaction_tool.tensorflow import make_pruning_layer_list, \
 Pruner

Figure 3-15 Importing the DRP-AI Extension Pack Module
Note: Import tensorflow_model_optimization.

3.5.2 [TensorFlow] Loading the Trained Model
Load the trained model according to the usage method of TensorFlow.

20
21

2. Loading the trained model
model = tf.keras.models.load_model("pretrained_model.h5")

Figure 3-16 Loading the Trained Model

3.5.3 [TensorFlow] Preparing for Pruning the Model
After having executed the API function for pruning, obtain the model to which pruning is to be applied by
using the get_pruning_model() function. After that, execute compilation of the model.

35
36
37
38
39
40

3. Preparing for pruning the model
pruning_layer_list = make_pruning_layer_list(model)
pruner = Pruner(model, pruning_layer_list, final_pr=0.7)
model_for_pruning = pruner.get_pruning_model()
Compiling the model.
model_for_pruning.compile(**compile_args)

Figure 3-17 Preparing for Pruning the Model

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 25 of 58
Oct.08.24

3.5.4 [TensorFlow] Registering the Callback Function for Pruning
Register the callback function for pruning when carrying out training. For details on UpdatePruningStep() and
PruningSummaries(), see 3.6 and the official documents of TensorFlow.

42
43
44
45
46
47
48
49
50

Training
4. Registering the callback function for pruning
callbacks = [
 # Update pruning parameters
 tfmot.sparsity.keras.UpdatePruningStep(),
 # Save pruning informations
 tfmot.sparsity.keras.PruningSummaries(log_dir="./log_dir"),
]
model_for_pruning.fit(train_images,
 train_labels,
 **fit_args,
 callbacks=callbacks)

Figure 3-18 Registering the Callback Function for Pruning
Note: Only executing the step of preparing for pruning a model, which was described in 3.5.3, does not lead

to actual pruning of the model. Make sure to always execute that step in combination with the
callback function.

3.5.5 [TensorFlow] Saving the Pruned Model
Save the model according to the usage method of TensorFlow. If the model is to be exported to ONNX,
specify 12 for opset.

52
53
54
55

4. Saving the pruned model
model_for_pruning.save("one-shot_pruned_model.h5", include_optimizer=True)
onnx_model, _ = tf2onnx.convert.from_keras(model, opset=12)
onnx.save(onnx_model, 'one-shot_pruned_model.onnx')

Figure 3-19 Saving the Pruned Model

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 26 of 58
Oct.08.24

3.6 [TensorFlow] Confirming the Result of Pruning
The steps involved in confirming the result of pruning are given below. The callback function
(PruningSummaries()) provided by TensorFlow can be used to obtain the result of how many parameters
were pruned in which layers. TensorBoard provided by TensorFlow can be used to display the obtained
information in a way that allows confirming the result as shown below.

Figure 3-20 Using TensorBoard to Confirm the Pruning Rate

The changes in the pruning rate of the "prune_low_magnitude_dense2" layer are shown in the above figure.
The horizontal axis indicates the number of steps (iterations) and the vertical axis indicates the pruning rate.

For example, PruningSummaries() may be set as follows:

tfmot.sparsity.keras.PruningSummaries(log_dir="./logdir")

The result of pruning can be confirmed by starting up TensorBoard as follows:

$ tensorboard –logdir ./logdir

For details, see the official documents of TensorFlow.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 27 of 58
Oct.08.24

3.7 [TensorFlow] Training or Inference with a Saved Pruned Model
The steps involved in loading a saved pruned model are given below. Refer to this section when continuing
to train a saved pruned model or performing inference with a pruned model.

Load the saved pruned model through the steps listed below.

1. Importing the DRP-AI Extension Pack module
2. Preparing for pruning the model with a pruning rate of 0.0
3. Loading the pruned model

The figure below shows a listing of the sample code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39

Importing the library
import tensorflow as tf
import tensorflow_model_optimization as tfmot
1. Importing the DRP-AI Extension Pack module
from drpai_compaction_tool.tensorflow import make_pruning_layer_list, \
 Pruner

def print_sparsity(model):
 import numpy as np
 from tensorflow_model_optimization.python.core.sparsity.keras \
 import pruning_wrapper

 layer_info = {}
 for layer in model.layers:
 if not isinstance(layer, pruning_wrapper.PruneLowMagnitude):
 continue
 for weight, mask, threshold in layer.pruning_vars:
 np_mask = tf.keras.backend.get_value(mask)
 sparsity = 1.0 - np.count_nonzero(np_mask) / float(np_mask.size)
 layer_info[layer.name] = sparsity

 max_len = len(max(layer_info.keys(), key=lambda name: len(name)))
 for name, sparsity in layer_info.items():
 print(f'{name:{max_len+1}s} | {sparsity:0.2f}')

Defining the neural network
def NeuralNetwork(input_shape=(32, 32, 3)):
 num_classes = 10
 return tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=input_shape),
 tf.keras.layers.Dense(512, activation='relu', name="dense1"),
 tf.keras.layers.Dense(512, activation='relu', name="dense2"),
 tf.keras.layers.Dropout(0.4),
 tf.keras.layers.Dense(num_classes,
 activation='softmax', name="dense3")
])
model = NeuralNetwork()

2. Preparing for pruning the model with a pruning rate of 0.0
pruning_layer_list = make_pruning_layer_list(model)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 28 of 58
Oct.08.24

40
41
42
43
44
45
46

pruner = Pruner(model, pruning_layer_list, final_pr=0.0)
model_for_pruning = pruner.get_pruning_model()
print_sparsity(model_for_pruning)

3. Loading the pruned model
model_for_pruning.load_weights("pruned_model.h5")
print_sparsity(model_for_pruning)

Figure 3-21 [TensorFlow] Loading the Pruned Model

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 29 of 58
Oct.08.24

3.8 Sample Code
This subsection describes how to execute the sample code and gives an outline of its operation. The
accuracy of a model after pruning can be confirmed with the use of the sample code.

3.8.1 classification/pytorch_mobilenetv2
This sample code employs the MobileNetV2 architecture of PyTorch and is for use in initial training and
pruning then retraining. The code is for use with the CIFAR-10 dataset. The following three files are
provided. The method for adding the DRP-AI Extension Pack module can be confirmed by comparing
train.py, code for use in initial training with the files with names of the form retrain*.py, containing the two
variants of the code for use in pruning then retraining.

Table 3.1 List of Provided Files

File Name Description
train.py MobileNetV2 sample code for initial training
retrain_with_oneshot_pruning.py MobileNetV2 sample code for pruning then retraining (one-

shot pruning)
retrain_with_gradual_pruning.py MobileNetV2 sample code for pruning then retraining (gradual

pruning)

Pruning then retraining with the MobileNetV2 architecture can be performed by executing the following two
steps.

Step 1: Initial training

$ python3 train.py

Step 2: Pruning then retraining

In one-shot pruning

$ python3 retrain_with_oneshot_pruning.py

In gradual pruning

$ python3 retrain_with_gradual_pruning.py

Figure 3-22 Executing the MobileNetV2 Sample Code for Initial Training
and Pruning Then Retraining

After executing the sample code, the files listed in the table below will have been output.

Table 3.2 List of Output Files

File Name Description
pretrained_mobilenetv2.pth Trained model file (pth format)
pretrained_mobilenetv2.onnx Trained model file (ONNX format)
oneshot_pruned_mobilenetv2.pth Model file after pruning in one-shot pruning mode then

retraining (pth format)
oneshot_pruned_mobilenetv2.onnx Model file after pruning in one-shot pruning mode then

retraining (ONNX format)
gradual_pruned_mobilenetv2.pth Model file after pruning in gradual pruning mode then

retraining (pth format)
gradual_pruned_mobilenetv2.onnx Model file after pruning in gradual pruning mode then

retraining (ONNX format)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 30 of 58
Oct.08.24

Command-line options are listed in the table below.

Table 3.3 List of Options of the MobileNetV2 Sample Code for Initial Training
and Pruning Then Retraining

Option Argument Description
-h, --help Outputs a help message.

Example:
$ python3 train.py -h

--lr LR Sets the learning rate.
Set a small learning rate for a case where the loss varies greatly.
Set a large learning rate for a case where the loss does not vary.
Example:
$ python3 train.py --lr 0.2

--max_epochs MAX_EPOCHS Specifies the maximum number of epochs.
If you want a greater accuracy, set a value greater than the default so
that learning proceeds for a longer time.
Example:
$ python3 train.py --max_epochs 3

--pretrained_weight Specifies the name of a file (.pth format) for a model for initial training.
Note: Can only be set for code for pruning then retraining.
Example:
$ python3 retrain_with_oneshot_pruning.py \
 –pretrained_weight ./pretrained_mobilenetv2.pth

--pruning_rate Specifies the pruning rate.
Note: Can only be set for code for pruning then retraining.
Example:
$ python3 retrain_with_oneshot_pruning.py \
 –pruning_rate 0.7

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 31 of 58
Oct.08.24

3.8.2 classification/tensorflow_cnn
This sample code employs the CNN model of TensorFlow and is for use in initial training and pruning then
retraining. The code is for use with the CIFAR-10 dataset. The following three files are provided. The method
for adding the DRP-AI Extension Pack module can be confirmed by comparing train.py, code for use in initial
training with the files with names of the form retrain*.py, containing the two variants of the code for use in
pruning then retraining.

Table 3.4 List of Provided Files

File Name Description
train.py CNN sample code for initial training
retrain_with_oneshot_pruning.py CNN sample code for pruning then retraining (one-shot

pruning)
retrain_with_gradual_pruning.py CNN sample code for pruning then retraining (gradual

pruning)

Pruning then retraining with the CNN model can be performed by executing the following two steps.

Step 1: Initial training

$ python3 train.py

Step 2: Pruning then retraining

In one-shot pruning

$ python3 retrain_with_oneshot_pruning.py

In gradual pruning

$ python3 retrain_with_gradual_pruning.py

Figure 3-23 Executing the CNN Sample Code for Initial Training and Pruning Then Retraining

After executing the sample code, the files listed in the table below will have been output.

Table 3.5 List of Output Files

File Name Description
pretrained_cnn.h5 Trained model file (h5 format)
pretrained_cnn.onnx Trained model file (ONNX format)
oneshot_pruned_cnn.h5 Model file after pruning in one-shot pruning mode then

retraining (h5 format)
oneshot_pruned_cnn.onnx Model file after pruning in one-shot pruning mode then

retraining (ONNX format)
gradual_pruned_cnn.h5 Model file after pruning in gradual pruning mode then

retraining (h5 format)
gradual_pruned_cnn.onnx Model file after pruning in gradual pruning mode then

retraining (ONNX format)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 32 of 58
Oct.08.24

Command-line options are listed in the table below.

Table 3.6 List of Options of the CNN Sample Code for Initial Training and Pruning Then Retraining

Option Argument Description
-h, --help Outputs a help message.

Example:
$ python3 train.py -h

--lr LR Sets the learning rate.
Set a small learning rate for a case where the loss varies greatly.
Set a large learning rate for a case where the loss does not vary.
Example:
$ python3 train.py --lr 0.2

--max_epochs MAX_EPOCHS Specifies the maximum number of epochs.
If you want a greater accuracy, set a value greater than the default so
that learning proceeds for a longer time.
Example:
$ python3 train.py --max_epochs 3

--pretrained_weight Specifies the name of a file (.h5 format) of a model for initial training.
Note: Can only be set for code for pruning then retraining.
Example:
$ python3 retrain_with_oneshot_pruning.py \
 –pretrained_weight ./pretrained_cnn.h5

--pruning_rate Specifies the pruning rate.
Note: Can only be set for code for pruning then retraining.
Example:
$ python3 retrain_with_oneshot_pruning.py \
 –pruning_rate 0.7

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 33 of 58
Oct.08.24

4. Details on the DRP-AI Extension Pack API
This section describes the API functions and class provided by the DRP-AI Extension Pack.

4.1 List of DRP-AI Extension Pack API Functions and Class
The API functions and class provided by the DRP-AI Extension Pack are listed in the table below.

Table 4.1 List of DRP-AI Extension Pack API Functions and Class

Module Function/Class Name Description Section
drpai_compaction_tool.
pytorch

make_pruning_layer_list Sets layers to which pruning is not to be
applied and creates the list of the target
layers for pruning.

4.2.1

Pruner Applies pruning to the model. 4.2.2
get_endstep Gets the step at which pruning ends. 4.2.3
get_frequency Gets the frequency for updating of the

pruning rate.
4.2.4

get_model_info Gets a list of information on the model,
such as the numbers of parameters.

4.2.5

deepcopy_model Deep copy the model. (Deep copy means
copies that are completely reproduced.)

4.2.6

load_pruned_state_dict Loads the model which weights is pruned 4.2.7
drpai_compaction_tool.t
ensorflow

make_pruning_layer_list Sets layers to which pruning is not to be
applied and creates the list of the target
layers for pruning.

4.3.1

Pruner Applies pruning to the model. 4.3.2
get_endstep Gets the step at which pruning ends. 4.3.3
get_frequency Gets the frequency for updating of the

pruning rate.
4.3.4

The API functions and class are described in terms of the following items on the following pages.

[Overview] Describes the API class or function in outline.

[Function/class name] Function name or class name

[Calling format] Describes the format for calling the function or the class as a function.

[Argument] Describes the arguments.

[Returns] Describes the return value.

[Feature] Describes the function of the API.

[Remarks] Describes points to note.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 34 of 58
Oct.08.24

4.2 [PyTorch]
4.2.1 make_pruning_layer_list

[Overview] Sets layers to which pruning is not to be applied and creates the list of the
target layers for pruning.

[Function/class name] make_pruning_layer_list

[Calling format] make_pruning_layer_list(model: torch.nn.Module,

 input_size: List[Tuple[int]],
 input_data: Union[List[Any], Mapping[Any]],
 prune_last: bool = False,
 prune_dwise: bool = False) -> List[str]

[Argument] model: torch.nn.Module PyTorch model

input_size: List[Tuple[int]] Shape of input data
Default: None
Set either input_size or input_data.
Input values in the order of [batch size, number
of channels, height, width].
A value of at least 2 should be set as the batch
size when using batch normalization.

input_data:
Union[List[Any],
 Mapping[Any]]

Input data
Default: None
Set either input_size or input_data.

prune_last: bool When this argument is set to “true”, the last
layer is included among the targets for pruning.
Default: False

prune_dwise: bool When this argument is set to “true”, the
depthwise convolution layer is included among
the targets for pruning.
Default: False

[Returns] pruning_layer_list: List[str] List of the target layers for pruning

[Feature] Creates the list of the target layers for pruning based on the input model.

Pruning is to be applied to the layers defined with torch.nn.Conv2d or
torch.nn.Linear.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 35 of 58
Oct.08.24

[Remarks] Pruning cannot be applied to the first layer because doing so significantly
worsens the accuracy of the model.
Pruning also cannot be applied to a layer for which the number of input
channels is not a multiple of 32.
Pruning is not applied to the last layer or depthwise convolution layer by
default because doing so significantly worsens the accuracy of the model.
For details on torch.nn.Module, torch.nn.Conv2d, and torch.nn.Linear, see the
official documents of PyTorch.
Usage example 1:
>>>import torchvision

>>> model = torchvision.models.resnet18(num_classes=1000)

Set a value of at least 2 as the batch size because batch normalization is
used in ResNet18.
>>> make_pruning_layer_list(model, \

 input_size=[(2,3,224,224)])

Usage example 2:
>>>import torchvision

>>> model = torchvision.models.detection.ssd300_vgg16()

Inputting in the list format

>>> make_pruning_layer_list(model, \

 input_data=[[torch.rand(3, 300, 300)], \

 [{'boxes': torch.tensor([[0, 0, 100, 100]]),\

 'labels': torch.tensor([0])}]])

Inputting in the dict format

>>> make_pruning_layer_list(model,

 input_data={

 "images": [torch.rand(3, 300, 300)], \

 "targets": [{'boxes': torch.tensor([[0, 0, 100, 100]]),\

 'labels': torch.tensor([0])}] \

 } \

)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 36 of 58
Oct.08.24

4.2.2 Pruner
[Overview] Controls the pruning parameters.

[Function/class name] Pruner

[Calling format] class Pruner(model: torch.nn.Module,

pruning_layer_list: List[str],

initial_pr: float,

final_pr: float,

begin_step: int,

end_step: int,

frequency: int,

)

[Argument] model: torch.nn.Module PyTorch model

pruning_layer_list: List[str] List of the target layers for pruning
initial_pr: float Initial value of pruning rate

Default: 0.01
Input range: 0 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑝𝑝𝑝𝑝 < 1

final_pr: float Final value of pruning rate
Default: 0.7
Input range: 0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑝𝑝𝑝𝑝 < 1

begin_step: int Number of the step (iteration) where pruning
starts
Default: 0
Input range: 0 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖_𝑠𝑠𝑖𝑖𝑏𝑏𝑝𝑝

end_step: int Number of the step (iteration) where pruning
ends
Default: -1
Input range: −1 ≤ 𝑏𝑏𝑖𝑖𝑒𝑒_𝑠𝑠𝑖𝑖𝑏𝑏𝑝𝑝

frequency: int Frequency for executing pruning (number of
iterations)
Default: 100
Input range: 0 < 𝑓𝑓𝑝𝑝𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓

[Returns] pruner: object Object for setting up pruning

[Feature] The model is only pruned once when end_step is -1. (Any settings of initial_pr,

begin_step, and frequency will be ignored in this case.)
When a value other than -1 is set, gradual pruning is applied to the model.
For details, refer to [Remarks] below.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 37 of 58
Oct.08.24

[Remarks] Call this API function after registering the parameters of the model to the
optimizer.

The setting of begin_step = end_step is prohibited.
When end_step = -1, the settings of initial_pr, begin_step, and frequency are
ignored.
Pruning is carried out over the number of iterations set by [begin_step,
end_step]. To complete pruning, training needs to have been performed for the
number of iterations represented by (end_step − begin_step + 1).
initial_pr and final_pr must be values in the range [0.0, 1.0).

The use of the default values for initial_pr and begin_step is recommended.
For end_step, setting a value around 70% of the total number of iterations in
training is recommended. (For example, when the total number of iterations
was 100, set 70 iterations.) Note that get_endstep() can be used to set the
value.
For frequency, setting the total number of iterations per epoch is
recommended. Note that get_frequency() can be used to set the value.
For details on torch.nn.Module, see the official documents of PyTorch.

The setting of end_step determines the pruning mode.
The initial use of one-shot pruning is recommended. When this leads to an
excessively great deterioration in the accuracy of the model, gradual pruning
should be used.

When end_step = -1 (one-shot pruning)
Pruning is executed when this API function is called.

The settings of initial_pr, begin_step, and frequency are ignored.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 38 of 58
Oct.08.24

When end_step is other than -1 (gradual pruning)
The pruning rate changes with the frequency.

Pruning is executed when the update() function (see 4.2.2.1) is called.

Variables

Variable Name Description

is_finished The value of this variable becoming “true” indicates the completion of pruning.

Methods

Method Name Description

update() Updates the pruning parameters.

state_dict() Returns the settings of Pruner in the dict format.

load_state_dict() Loads the settings of Pruner.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 39 of 58
Oct.08.24

4.2.2.1 update
[Overview] Updates the pruning parameters.

[Function/class name] update

[Calling format] update() -> None

[Argument]

[Returns]

[Feature] Updates the pruning parameters.

[Remarks] This API function must always be called per iteration.

The timing for calling this API function is at the start (beginning) of each
iteration.
To execute pruning during iterations of [begin_step, end_step], this API
function must be called at least the number of times represented by (end_step
− begin_step + 1).
In one-shot pruning
Updates the pruning parameters. The pruning rate of the model does not
change.
In gradual pruning
Updates the pruning parameters and the pruning rate of the model.

4.2.2.2 state_dict
[Overview] Returns the settings of Pruner in the dict format.

[Function/class name] state_dict

[Calling format] state_dict() -> Dict[str, Any]

[Argument]

[Returns] Data in dict-format that includes the settings of

Pruner

[Feature] Returns the settings of Pruner in the dict format.

[Remarks] This API function is used when saving the settings of Pruner.

Usage example:
pruner = Pruner(model, pruning_layer_list)

torch.save(pruner.state_dict(),"pruner.pth")

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 40 of 58
Oct.08.24

4.2.2.3 load_state_dict
[Overview] Loads the settings of Pruner.

[Function/class name] load_state_dict

[Calling format] load_state_dict(state_dict: Dict[str, Any]) -> None

[Argument] state_dict: Dict[str, Any] Data in dict-format that includes the settings of

Pruner

[Returns]

[Feature] Loads the settings of Pruner.

[Remarks] This API function is used when loading the settings of Pruner.

Usage example:
pruner = Pruner(model, pruning_layer_list)

pruner.load_state_dict(torch.load("pruner.pth"))

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 41 of 58
Oct.08.24

4.2.3 get_endstep
[Overview] Gets the step at which pruning ends.

[Function/class name] get_endstep

[Calling format] get_endstep(dataloader: torch.utils.data.DataLoader,

 max_iter: int,

 max_epoch: int,

 ratio: float) -> int

[Argument] dataloader:

torch.utils.data.DataLoader
PyTorch data loader
Set the data loader for use in training.

max_iter: int Maximum number of iterations in training
Default: None
Input range: 0 < max_𝑖𝑖𝑖𝑖𝑏𝑏𝑝𝑝

Set either max_iter or max_epoch.
Both cannot be set at the same time.

max_epoch: int Maximum number of epochs in training
Default: None
Input range: 0 < max_𝑏𝑏𝑝𝑝𝑒𝑒𝑓𝑓ℎ

Set either max_iter or max_epoch.
Both cannot be set at the same time.

ratio: float Ratio of the step where pruning ends to the
maximum number of iterations
Default: 0.7
Input range: 0 < 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒

[Returns] end_step: int Number of the step (iteration) where pruning

ends

[Feature] Gets the step at which pruning ends.

[Remarks] Set either max_iter or max_epoch.

Both cannot be set at the same time.
The use of the default value for ratio is recommended.
The step where pruning ends can be obtained from the following equation.

𝑏𝑏𝑖𝑖𝑒𝑒_𝑠𝑠𝑖𝑖𝑏𝑏𝑝𝑝 = 𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑓𝑓𝑀𝑀 𝑖𝑖𝑖𝑖𝑏𝑏𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖 × 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒

70% of the maximum number of iterations is returned by default. When
training was performed for 100 iterations, this API function by default returns
70 iterations for pruning.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 42 of 58
Oct.08.24

4.2.4 get_frequency
[Overview] Gets the frequency for updating of the pruning rate.

[Function/class name] get_frequency

[Calling format] get_frequency(dataloader: torch.utils.data.DataLoader,

 ratio: float) -> int

[Argument] dataloader:

torch.utils.data.DataLoader
PyTorch data loader
Set the data loader for training.

ratio: float Ratio for controlling the frequency for updating
of the pruning rate
Default: 1.0
Input range: 0 < 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒

[Returns] frequency: int Frequency (iteration) for updating of the pruning

rate

[Feature] Gets the frequency for updating of the pruning rate.

[Remarks] The use of the default value for ratio is recommended.

The total number of iterations per epoch is returned by default. When 1 epoch
consists of 100 iterations, this API function returns 100 iterations.
When ratio is 1.0, the pruning rate is updated once every epoch. When ratio is
0.5, the pruning rate is updated twice every epoch.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 43 of 58
Oct.08.24

4.2.5 get_model_info
[Overview] Gets a list of information on the model, such as the numbers of parameters.

[Function/class name] get_model_info

[Calling format] get_model_info (model: torch.nn.Module,

 input_size: List[Tuple[int]],
 input_data: Union[List[Any], Mapping[Any]],
) -> pandas.core.frame.DataFrame

[Argument] model: torch.nn.Module PyTorch model

input_size: List[Tuple[int]] Shape of input data
Default: None
Set either input_size or input_data.
Input values in the order of [batch size,
number of channels, height, width].

input_data:
Union[List[Any],
 Mapping[Any]]

Input data
Default: None
Set either input_size or input_data.

[Returns] model_info:

pandas.core.frame.DataFrame
List including the input shape, output shape,
number of parameters, sparsity, number of
multiply-and-accumulate calculations before
pruning, and number of multiply-and-
accumulate calculations after pruning

[Feature] Gets information on the convolution layers and fully connected layers of the

model in terms of the input shape, output shape, number of parameters,
sparsity, number of multiply-and-accumulate calculations before pruning, and
number of multiply-and-accumulate calculations after pruning.
The values in terms of the items listed below are obtained for each layer.

module name Layer name
input shape Input shape
output shape Output shape
params Number of parameters
sparsity Sparsity rate (pruning rate)
Baseline MAC Number of multiply-and-accumulate

calculations before pruning
Current MAC Number of multiply-and-accumulate

calculations after pruning

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 44 of 58
Oct.08.24

[Remarks] This function is only applicable to the convolution layers and fully connected
layers.
The numbers of multiply-and-accumulate calculations are calculated on the
assumption that each set of calculations in a multiply-and-accumulate
operation is handled as a single bundle.
For details on torch.nn.Module, see the official documents of PyTorch.
For details on the pandas.core.frame.DataFrame class, see the official
documents of pandas.
Usage example:
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> class NeuralNetwork(nn.Module):
>>> def __init__(self):
>>> super(NeuralNetwork, self).__init__()
>>> self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding='same')
>>> self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding='same')
>>> self.fc1 = nn.Linear(64*32*32, 50)
>>> self.fc2 = nn.Linear(50, 10)
>>> def forward(self, x):
>>> x = F.relu(F.max_pool2d(self.conv1(x), 2))
>>> x = F.relu(F.max_pool2d(self.conv2(x), 2))
>>> x = x.view(-1, 64*32*32)
>>> x = F.relu(self.fc1(x))
>>> x = self.fc2(x)
>>> return F.log_softmax(x, dim=1)
>>> model = NeuralNetwork()
>>> from drpai_compaction_tool.pytorch import get_model_info
>>> print(get_model_info(model, [(1, 3, 128, 128)]))

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 45 of 58
Oct.08.24

4.2.6 deepcopy_model
[Overview] Deep copy the model. (Deep copy means copies that are completely reproduced.)

[Function/Class Name] deepcopy_model

[Calling format] deepcopy_model(model: torch.nn.Module) -> torch.nn.Module

[Argument] model: torch.nn.Module PyTorch model

[Returns] copied_model: torch.nn.Module Deep copied PyTorch model

[Feature] Deep copy the model. Deep copy means copies that are completely reproduced.

[Remarks] deepcopy() cannot be executed for a pruned model.
In case of need to deep copy a pruned model, please use the deepcopy_model()
function instead of using deepcopy().

For details on torch.nn.Module, see the official documents of PyTorch.
Usage example:

>>> import torch

>>> from collections import OrderedDict

>>> model = torch.nn.Sequential(OrderedDict([

 ("fc1", torch.nn.Linear(3,1024)),

 ("fc2", torch.nn.Linear(1024,10))

]))

>>> from drpai_compaction_tool.pytorch import Pruner, deepcopy_model

>>> _ = Pruner(model, ["fc1" "fc2"])

>>> copied_model = deepcopy_model(model)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 46 of 58
Oct.08.24

4.2.7 load_pruned_state_dict
[Overview] Loads the model which weights (stated_dict) is pruned

[Function/Class Name] load_pruned_state_dict

[Calling format] load_pruned_state_dict(model: torch.nn.Module,

pruned_state_dict: Dict,

strict: bool) -> None

[Argument] model: torch.nn.Module PyTorch model

pruned_state_dict: Dict Data in dict-format that includes the
pruned weights.

strict: bool Whether to strictly enforce that the keys
in pruned_state_dict match the keys
returned by the model's state_dict()
function.

Default: True

When this argument is set to “true”, an
error is returned if the keys do not match.

[Returns] - -

[Feature] Loads the model which weights (stated_dict) is pruned.

The pruned weights (state_dict) means weight parameters stored in weight_orig /
weight_mask format.

[Remarks] This function performs the following behavior depending on each parameter.

model pruned_state_dict behavior

sparse (pruned) sparse (pruned) This function loads the
pruned_state_dict to model.

sparse (pruned) dense This function raises an error.

dense sparse (pruned) This function loads the
pruned_state_dict to model.

Note: After the dense model to
be input to this function, the
weight parameters will change
to weight_org/weight_mask
format.

dense dense This function raises an error.

For details on torch.nn.Module, see the official documents of PyTorch.

Usage example:

>>> import torch, torchvision

>>> pruned_model = torchvision.models.resnet18(num_classes=1000)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 47 of 58
Oct.08.24

>>> from drpai_compaction_tool.pytorch import Pruner, load_pruned_state_dict

This example prunes the layer called "layer1.0.conv1".

>>> _ = Pruner(pruned_model, ["layer1.0.conv1"])

>>> torch.save(pruned_model.state_dict(), "pruned_state_dict.pth")

>>> dense_model = torchvision.models.resnet18(num_classes=1000)

Note: After the dense model to be input to this function, the weight parameters
will change to weight_org/weight_mask format.

>>> load_pruned_state_dict(dense_model, torch.load("pruned_state_dict.pth"))

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 48 of 58
Oct.08.24

4.3 [TensorFlow]
4.3.1 make_pruning_layer_list

[Overview] Sets layers to which pruning is not to be applied and creates the list of the
target layers for pruning.

[Function/class name] make_pruning_layer_list

[Calling format] make_pruning_layer_list(model: tensorflow.python.

keras.engine.functional.Functional,

prune_last: bool = False,

prune_dwise: bool = False) -> List[str]

[Argument] model:

tensorflow.python.

 keras.engine.

 functional.Functional

TensorFlow model
Only a functional model or sequential model can
be input.

prune_last: bool When this argument is set to “true”, the last
layer is included among the targets for pruning.
Default: False

prune_dwise: bool When this argument is set to “true”, the
depthwise convolution layer is included among
the targets for pruning.
Default: False

[Returns] pruning_layer_list: List[str] List of the target layers for pruning

[Feature] Creates the list of the target layers for pruning based on the input model.

Pruning is to be applied to the layers defined with
tensorflow.keras.layers.Conv2D or tensorflow.keras.layers.Dense.

[Remarks] Pruning cannot be applied to the first layer because doing so significantly

worsens the accuracy of the model.
Pruning also cannot be applied to a layer for which the number of input
channels is not a multiple of 32.
Pruning is not applied to the last layer or depthwise convolution layer by
default because doing so significantly worsens the accuracy of the model.
For details on tensorflow.keras.Model, tensorflow.keras.layers.Conv2D, and
tensorflow.keras.layers.Dense, see the official documents of TensorFlow.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 49 of 58
Oct.08.24

4.3.2 Pruner
[Overview] Controls the pruning parameters.

[Function/class name] Pruner

[Calling format] class Pruner (model: tensorflow.keras.Model,

pruning_layer_list: List[str],

initial_pr: float,

final_pr: float,

begin_step: int,

end_step: int,

frequency: int,

)

[Argument] model:

tensorflow.keras.Model
TensorFlow model

pruning_layer_list: List[str] List of the target layers for pruning
initial_pr: float Initial value of pruning rate

Default: 0.01
Input range: 0 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑝𝑝𝑝𝑝 < 1

final_pr: float Final value of pruning rate
Default: 0.7
Input range: 0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑝𝑝𝑝𝑝 < 1

begin_step: int Number of the step (iteration) where pruning
starts
Default: 0
Input range: 0 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖_𝑠𝑠𝑖𝑖𝑏𝑏𝑝𝑝

end_step: int Number of the step (iteration) where pruning
ends
Default: -1
Input range: −1 ≤ 𝑏𝑏𝑖𝑖𝑒𝑒_𝑠𝑠𝑖𝑖𝑏𝑏𝑝𝑝

frequency: int Frequency for executing pruning (number of
iterations)
Default: 100
Input range: 0 < 𝑓𝑓𝑝𝑝𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓

[Returns] pruner: object Object for setting up pruning

[Feature] The model is only pruned once when end_step is -1. (Any settings of initial_pr,

begin_step, and frequency will be ignored in this case.)
When a value other than -1 is set, gradual pruning is applied to the model.
For details, refer to [Remarks] below.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 50 of 58
Oct.08.24

[Remarks] When end_step = -1, the settings of initial_pr, begin_step, and frequency are
ignored.
The setting of begin_step = end_step is prohibited.
Pruning is carried out over the number of iterations set by [begin_step,
end_step]. To complete pruning, training needs to have been performed for the
number of iterations represented by (end_step − begin_step + 1).
initial_pr and final_pr must be values in the range [0.0, 1.0).

The use of the default values for initial_pr and begin_step is recommended.
For end_step, setting a value around 70% of the total number of iterations in
training is recommended. (For example, when the total number of iterations
was 100, set 70 iterations.) Note that get_endstep() can be used to set the
value.
For frequency, setting the total number of iterations per epoch is
recommended. Note that get_frequency() can be used to set the value.
For details on tensorflow.keras.Model, see the official documents of
TensorFlow.

The setting of end_step determines the pruning mode.
The initial use of one-shot pruning is recommended. When this leads to an
excessively great deterioration in the accuracy of the model, gradual pruning
should be used.

When end_step = -1 (one-shot pruning)
Pruning is executed only once at the beginning.

The settings of initial_pr, begin_step, and frequency are ignored.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 51 of 58
Oct.08.24

When end_step is other than -1 (gradual pruning)
The pruning rate changes with the frequency.

Variables

Variable Name Description

Methods

Method Name Description

get_pruning_model() Gets the model for pruning.

4.3.2.1 get_pruning_model
[Overview] Gets the model for pruning.

[Function/class name] get_pruning_model

[Calling format] get_pruning_model() -> tensorflow.keras.Model

[Argument]

[Returns] pruning_model:

tensorflow.keras.Model
Model for pruning

[Feature] Gets the model for pruning.

[Remarks]

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 52 of 58
Oct.08.24

4.3.3 get_endstep
[Overview] Gets the step at which pruning ends.

[Function/class name] get_endstep

[Calling format] get_endstep(num_data: int,

 batch_size: int,

 max_iter: int,

 max_epoch: int,

 ratio: float) -> int

[Argument] num_data: int Number of training data

batch_size: int Batch size in training
max_iter: int Maximum number of iterations in training

Default: None
Input range: 0 < 𝑀𝑀𝑖𝑖𝑀𝑀_𝑖𝑖𝑖𝑖𝑏𝑏𝑝𝑝
Set either max_iter or max_epoch.
Both cannot be set at the same time.

max_epoch: int Maximum number of epochs in training
Default: None
Input range: 0 < 𝑀𝑀𝑖𝑖𝑀𝑀_𝑏𝑏𝑝𝑝𝑒𝑒𝑓𝑓ℎ
Set either max_iter or max_epoch.
Both cannot be set at the same time.

ratio: float Ratio of the step where pruning ends to the
maximum number of iterations
Default: 0.7
Input range: 0 < 𝑓𝑓𝑝𝑝𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓

[Returns] end_step: int Number of the step (iteration) where pruning

ends

[Feature] Gets the step at which pruning ends.

[Remarks] Set either max_iter or max_epoch.

Both cannot be set at the same time.
The use of the default value for ratio is recommended.
The step where pruning ends can be obtained from the following equation.

𝑏𝑏𝑖𝑖𝑒𝑒_𝑠𝑠𝑖𝑖𝑏𝑏𝑝𝑝 = 𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑓𝑓𝑀𝑀 𝑖𝑖𝑖𝑖𝑏𝑏𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖 x 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒

70% of the maximum number of iterations is returned by default. When
training was performed for 100 iterations, this API function by default returns
70 iterations for pruning.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 53 of 58
Oct.08.24

4.3.4 get_frequency
[Overview] Gets the frequency for updating of the pruning rate.

[Function/class name] get_frequency

[Calling format] get_frequency(num_data: int,

 batch_size: int,

 ratio: float) -> int

[Argument] num_data: int Number of training data

batch_size: int Batch size in training
ratio: float Ratio for controlling the frequency for updating

of the pruning rate
Default: 1.0
Input range: 0 < 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒

[Returns] frequency: int Frequency (iteration) for updating of the pruning

rate

[Feature] Gets the frequency for updating of the pruning rate.

[Remarks] The use of the default value for ratio is recommended.

The total number of iterations per epoch is returned by default. When 1 epoch
consists of 100 iterations, this API function returns 100 iterations.
When ratio is 1.0, the pruning rate is updated once every epoch. When ratio is
0.5, the pruning rate is updated twice every epoch.

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 54 of 58
Oct.08.24

5. Recommendations during Application of Pruning
This section gives recommendations on how to suppress deterioration of the accuracy of the model due to
the application of pruning. Attempt the recommended measures if unacceptably low accuracy is encountered
after pruning then retraining.

• Perform pruning then retraining with 70% pruning rate to check the accuracy and processing
performance. After that, change pruning rate depending on the accuracy and processing performance,
and perform pruning then retraining again to check the accuracy and processing performance.

• Pruning should initially be performed as one-shot pruning. If the resulting accuracy is too low, try gradual
pruning.

• Do not apply pruning to the first and last layers.
• Do not apply pruning to the depthwise convolution layer.
• Use the same parameters in training, such as the learning rate, optimizer, epoch, as those that were set

for initial training.

Note: The recommended measures are not guaranteed to always suppress unacceptable deterioration of

the accuracy.

6. Usage Notes
• deepcopy() cannot be executed for a pruned model.

To copy a pruned model, please use deepcopy_model() function. For more details about this function,
see 4.2.6.

• When loading a saved pruned model, see 3.4 and 3.7.
• Do not use early stopping with gradual pruning. Doing so may cause training to be terminated when

pruning has not yet been completed. For details, see the TensorFlow sample code.
• Do not use Exponential Moving Average (EMA) with gradual pruning. It may cause incorrect pruning

result. After pruning then retraining, you can confirm whether the pruning rate is correct by using
get_model_info().

• When using the PruningSummaries() callback function of TensorFlow, do not also use the TensorBoard()
callback function of TensorFlow. Since the TensorBoard() callback function is initialized in the

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 55 of 58
Oct.08.24

PruningSummaries() callback function, use of both callback functions is judged to represent a double
definition and an error will occur. For details, see the TensorFlow sample code.

• Notes on using torch.nn.MultiheadAttention() in models
 Considerations for pruning

The Linear layer indicated by the red frame below will not be pruned. If pruning is desired, replace
torch.nn.MultiheadAttention() with torch.nn.Linear() and re-implement.

Figure reference:

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Figure 6-1 Structure of Multi-Head Attention

 Considerations for using get_model_info()

The input Linear layer enclosed in the red frame on Figure 6-1 does not display layer information.
Additionally, the layer enclosed in the green frame (*.out_proj layer) displays "-1" for the items
input_shape, output_shape, Baseline MAC, and Current MAC. The params and sparsity are
displayed. This does not affect pruning behavior.

Figure 6-2 Example output of get_model_info()

Information on the
*.out_proj layer

Information on the input
Linear layer is not displayed

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 56 of 58
Oct.08.24

 Considerations for exporting to ONNX

When exporting a model that uses torch.nn.MultiheadAttention() to ONNX, please call the following
code snippet highlighted in red before exporting to ONNX.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Define a sample model using MultiheadAttention()
class SelfAttentionLike(torch.nn.Module):
 def __init__(self, embed_dim = 32, num_heads = 2):
 super(SelfAttentionLike, self).__init__()
 self._embed_dim = embed_dim
 self._num_heads = num_heads
 self.linear1 = torch.nn.Linear(self._embed_dim,
 self._embed_dim)
 self.multihead_attention = \
 torch.nn.MultiheadAttention(self._embed_dim,
 self._num_heads)
 self.linear2 = torch.nn.Linear(self._embed_dim,
 self._embed_dim)

 def forward(self, x):
 x = self.linear1(x)
 attn_output, _ = self.multihead_attention(query=x,
 key=x,
 value=x)
 output = self.linear2(attn_output)
 return output

Create a model
embed_dim = 32
seq_len = 5
batchsize = 10
input_size = [(batchsize, seq_len, embed_dim)]
model = SelfAttentionLike(embed_dim=embed_dim)

Perform a pruning to a model
pruning_layer_list = make_pruning_layer_list(model,
 input_size=input_size)
pruner = Pruner(model,
 pruning_layer_list,
 final_pr=0.7)
print(get_model_info(model,
 input_size=input_size))

Perform a postprocess to export a model as ONNX
import torch.nn.utils.prune as prune
for name, module in model.named_modules():
 if isinstance(module, torch.nn.MultiheadAttention):
 prune.remove(module.out_proj, 'weight')

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 57 of 58
Oct.08.24

45
46
47
48
49
50
51

Export a model as ONNX
img = torch.randn(input_size[0])
torch.onnx.export(model,
 img,
 "exported_model.onnx",
 input_names=['input'],
 output_names=["output"])

• Resolving PT_GMI_002 errors when using get_model_info()

When using get_model_info() to get the pruning rate, the following error may occur:

[PT_GMI_002] Failed to run. See above stack traces for more details. If that does not help, please contact
Renesas.

If this error occurs, please use the print_sparsity() function instead of get_model_info() as follows to
verify the pruning rate:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

def calc_sparsity(module):
 if hasattr(module, 'weight_mask'):
 m = module.weight_mask
 sparsity = 1.0 - m.count_nonzero().item() / m.nelement()
 else:
 w = module.weight
 sparsity = 1.0 - w.count_nonzero().item() / w.nelement()
 return sparsity

def print_sparsity(model):
 for name, module in model.named_modules():
 if not isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)):
 continue
 sparsity = calc_sparsity(module)
 print(f'{name} = {sparsity:.04f}')

Use the print_sparsity() function instead of get_model_info().
Before
print(get_model_info(model, [(1,3,224,224)]))
After
print_sparsity(model)

DRP-AI Extension Pack (Pruning Tool) Version 1.1.0 User's Manual

R20UT5188EJ0200 Rev.2.00 Page 58 of 58
Oct.08.24

Revision History

Rev. Date
Description
Page Summary

1.00 Dec.05.23 — First edition issued
2.00 Oct.08.24 10, 54 Added updates in DRP-AI Extension Pack V1.1.0

Added usage notes on using torch.nn.MultiheadAttention()

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Product Configuration
	1.2 Operating Environment
	1.3 Function
	1.4 Pruning
	1.5 Relationship between Compressing AI Models and DRP-AI Performance
	1.6 Two Pruning Modes
	1.7 Updates in Version 1.1.0

	2. Setting Up the DRP-AI Extension Pack
	2.1 Installing the Library for Use by the DRP-AI Extension Pack
	2.2 Adding the Environment Variable
	2.3 Decompressing the DRP-AI Extension Pack
	2.4 Adding the Path to the DRP-AI Extension Pack

	3. Using the DRP-AI Extension Pack
	3.1 Flow of Using the DRP-AI Extension Pack
	3.2 [PyTorch] Adding the DRP-AI Extension Pack
	3.2.1 [PyTorch] Importing the DRP-AI Extension Pack Module
	3.2.2 [PyTorch] Loading the Trained Model
	3.2.3 [PyTorch] Preparing for Pruning the Model
	3.2.4 [PyTorch] Updating the Pruning Parameters
	3.2.5 [PyTorch] Saving the Pruned Model

	3.3 [PyTorch] Confirming the Result of Pruning
	3.4 [PyTorch] Training or Inference with a Saved Pruned Model
	3.4.1 [Recommend] How to load the pruned model with load_pruned_state_dict()
	3.4.2 How to load the pruned model with make_pruning_layer_list() and Pruner()

	3.5 [TensorFlow] Adding the DRP-AI Extension Pack
	3.5.1 [TensorFlow] Importing the DRP-AI Extension Pack Module
	3.5.2 [TensorFlow] Loading the Trained Model
	3.5.3 [TensorFlow] Preparing for Pruning the Model
	3.5.4 [TensorFlow] Registering the Callback Function for Pruning
	3.5.5 [TensorFlow] Saving the Pruned Model

	3.6 [TensorFlow] Confirming the Result of Pruning
	3.7 [TensorFlow] Training or Inference with a Saved Pruned Model
	3.8 Sample Code
	3.8.1 classification/pytorch_mobilenetv2
	3.8.2 classification/tensorflow_cnn

	4. Details on the DRP-AI Extension Pack API
	4.1 List of DRP-AI Extension Pack API Functions and Class
	4.2 [PyTorch]
	4.2.1 make_pruning_layer_list
	4.2.2 Pruner
	4.2.2.1 update
	4.2.2.2 state_dict
	4.2.2.3 load_state_dict

	4.2.3 get_endstep
	4.2.4 get_frequency
	4.2.5 get_model_info
	4.2.6 deepcopy_model
	4.2.7 load_pruned_state_dict

	4.3 [TensorFlow]
	4.3.1 make_pruning_layer_list
	4.3.2 Pruner
	4.3.2.1 get_pruning_model

	4.3.3 get_endstep
	4.3.4 get_frequency

	5. Recommendations during Application of Pruning
	6. Usage Notes
	Revision History
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

